2nd Feasibility Study of a Muon Storage Ring Neutrino Factory

US Muon Collaboration

Oxford 11/2001

R. B. Palmer (BNL)

- Today 14.15 US studies of Neutrino Factory Study 1, Study 2
- Wed. 12.00 Other studies, Experimental Programs, inc. MICE
- Thur. 12.00 Other Ideas:

 CERN & KEK Schemes
 longitudinal cooling, bunched phase rotation,
 FFAG's, Colliders, Radioactive beam neutrinos
- Fri. 16.15 The big picture:
 hadron, electron, muon colliders, neutrino factories

Feasibility Study 1

- Commissioned by FNAL Director
- FNAL Site specific (where relevant)
- FNAL + Collaboration
- Ed. Finley, Holtkamp (April 2000)
- Emphasize Feasibility
- allow "Entry Level" Performance

Feasible, but less performance

Feasibility Study 2

- Commissioned by BNL Director
- BNL Site specific (where relevant)
- BNL + Collaboration
- Edd. Ozaki, Palmer, Zisman
- Closeout May 4 2001
- Build on Study 1
- Maintain Feasibility
- Raise Performance

Feasible, and 6 \times μ/p

Physics Reach

- \bullet muon decays in straight section / $1\,10^7\,\mathrm{sec}$
- For Detector mass 50 kT
- Best distance: 2000 3000 km

WIPP=2900 km Homestake=2500 km

Comparisons

Schematic

PION PRODUCTION

For 50 - 800 GeV/c, pions/proton divided by proton energy in GeV:

- $\mathbf{Hg} \approx 2 \times \mathbf{C}$
- Low energy slightly better than high
- But harder to get short p bunch

PROTON DRIVER

- 1 MW BNL AGS Upgrade
 - -New (SNS like) SC Linac
 - $- ext{ Upgraded AGS (.5}
 ightarrow 2.5 ext{ Hz)}$
 - -6 single bunch extractions

- 4 MW further upgrade
 - $-\,Increases\,linac\,E \rightarrow 2 \times charge$
 - Accumulator Ring \rightarrow 5 Hz
 - -Bunch Compressor
- Similar performance with new 16 GeV Booster at FNAL

Target Area for 4 MW

TARGET

Mercury jet Target

- $ullet pprox 2 imes ext{Carbon (of study 1)}$
- 20 m/s replaces disturbed
- Nozzle inside field
- OK to 4 MW?

Where are the pions?

- Peak at low momenta $\approx 300 \ \mathrm{MeV/c}$
- $p_{\perp} \approx 200 \; \mathrm{MeV/c}$
- Angles large ≈ 45 deg.
- Use 20 T, 8 cm rad, Solenoid
- Captures all below 240 MeV/c
- Slow taper field to 1.25 T
- Pions are folded forward

Capture Solenoid & Dump

- 20 T hybrid magnet
 - Hollow Conductor Insert
 - Superconducting Outsert
- Taper field to 1.25 T in 18 m
- Mercury pool Beam Dump

Layout

Study 2 Radiation Levels

from Mokhov

for radiation 1 year $\equiv 2 \ 10^7 \ s$

Component	radius	1 MW Dose/yr	Max Dose	1MW Life	4 MW life
	\mathbf{cm}	\mathbf{Grays}	\mathbf{Grays}	years	years
Inner Shielding	7.5	5 10 ¹⁰	10^{12}	20	5
Hg Containment	18	10^{9}	10^{11}	100	25
Hollow Conductor	18	10^{9}	10^{11}	100	25
Superconductor	65 (75)	$5 (1.2) 10^6$	10^{8}	20 (80)	5 (20)

PROBLEM

- Initial pions have rms $dp/p \approx 100\%$
- rms Acceptance of cooling \approx 8%

SOLUTION:

Phase Rotate & Re-Bunch

- Increase dt
- Decrease dE

Simple Phase Rotation

1. Drift

2. Induction Linac to reduce dE/E

- Energy spread non uniform
- dp/p rms $\approx 6\%$

e.g. Study 1

Figure 6: Beam distributions in E-cT phase space along the induction linac. Distributions from L=0, 20, 60, and 100 m are shown.

3. Bunch

• dp/p rms $\approx 18\%$ too large

Non-distorting

- 1. 30 m Drift
- 2. Induction Linac to modify E vs t
- 3. Second drift ($\approx 100 \text{ m}$)
- 4. 2nd Induction Linac to reduce dE/E
 - Energy spread more uniform
 - dp/p rms $\approx 3\%$

Study 2

- 5. Bunch
 - dp/p rms $\approx 8\%$ OK

Study 2 Rotation

- Non-distorting
- 3 Unipolar Units
- Single pulses (FS1: 4)
- total length 260 m (FS1: 100)

9

2m Section

95 cm radius similar to ATA or DARHT but Superconducting inside coil

Performance

From target to phase rotation:

RF BUNCHER

Three stages:

- 1: Low field 200 MHz rf + 400 MHz harmonic
- 2. Med. field 200 MHz rf + 400 MHz harmonic
- 3. Higher field 200 MHz rf Similar to Study 1

COOLING CONCEPTS

• TRANSVERSE

• LONGITUDINAL EMIT EXCH

WHAT IS EMITTANCE

normalized emittance =
$$\frac{\text{PhaseSpaceArea}}{\text{m c}}$$

If x and p_x both Gaussian and uncorrellated, then area is an upright ellipse

$$_{\perp} = \frac{dp_{\perp}dx}{mc} = \qquad _{x} \ (\qquad _{v}) \qquad \qquad (\quad \textit{m rad})$$

$$_{\parallel} = \frac{dp_{\parallel}dz}{mc} = dp/p_{z} (v) \qquad (mrad)$$

$$_{6} = \begin{array}{ccc} 2 & & \\ \bot & & \parallel \end{array} \qquad (m)^{3}$$

Note that, by convention, the is not included in the calculated values, but added to the dimension

WHAT IS BETA Courant—Schneider

Again upright ellipse, e.g. at Focus:

Then, using emittance definition:

$$x = \sqrt{\perp \perp \perp \frac{1}{v}}$$

and:

$$=\sqrt{\frac{\perp}{\perp}\frac{1}{\nu}}$$

Transverse Cooling

- ullet Energy Loss lowers $_{\perp}$
- ullet Coulomb Scattering Increases \bot
- Equilibrium:

$$_{\perp} \propto _{\perp} \frac{1}{_{V}L_{R} dE/dx} \propto _{\perp}$$

- Need Low __
- Need Low Z Material
 - Hydrogen
 - Lithium Hydride
 - Lithium

How to get low \perp

SOLENOID

But coils are large, and direction of field must flip at least once, to avoid build up of angular momentum

FOCUS

Super FOFO Lattice

- 110 m long
- 17 MV/m RF
- Super FOFO Lattice
 - Stronger focus

Tapered Lattices

- as emittance falls, lower betas
- maintain constant angular beam size
- maximizes cooling rate

At Start of Cooling

At end of Cooling

Cooling Performance

- Gain Factor = 3
- Loss from growth of long emit.
- Avoided if longitudinal cooling

1-2 Flip Alternative

ACCELERATION

Linac + Recirculating Linear Accelerator (RLA)

- Superconducting Linacs
- 200 MHz
- Solenoid focus in initial linac
- Quad focus in RLA

Superconducting Cavities Cornell (200 MHz)

STORAGE RING

- High Field (to maximize straight/circumference)
- 30 kW (100 W/m) Decay electrons
- Strong focus (large emittance & dp/p)
- Good longitudinal packing factor

Arc Magnet Parameters:

$$B_1 = 6.93 \text{ T}, \ G_1 = 0 \text{ T/m}, \ L_1 = 1.89 \text{ m}$$

 $B_2 = 0. \text{ T}, \ G_2 = 35.0 \text{ T/m}, \ L_2 = 0.76 \text{ m}$
Average B = 4.94 T, $L_{cell} = 5.3 \text{ m}$

10 Cell Solution 60° Arc Cell Phase $\beta_{arc} = 8.69 \text{ m}$

Empty cell has warm quadrupoles with G = 27.2 T/m.

Geometric Decay Ratio =
$$\frac{126 \text{ m}}{358 \text{ m}}$$
 = 0.35 per straight section

section has increased β for reduced ses normal conducting quadrupoles.

53 m arc is mostly superconducting but has warm sections near each end for collimation.

126 m production straight s beam angular spread and u

126 m return straight is used for injection and other machine utility functions. Optics details are TBD.

Alternative Conventional Arcs

- Conventional FODO Lattice
- Cosine Theta Magnets
- Warm W shield inside

Ring Layout

. To Carlsbad	2903	km
Dip angle	13.1	\mathbf{deg}
${f straight}$	116	\mathbf{m}
circ	332	\mathbf{m}
m decay/circ	35	%
To Homestake	2528	km
Dip angle	11.4	\mathbf{deg}
${f straight}$	138	\mathbf{m}
circ	376	\mathbf{m}
m decay/circ	37	%
To Soudan	1713	km
Dip angle	7.73	\mathbf{deg}
$\operatorname{straight}$	2 18	\mathbf{m}
circ	536	\mathbf{m}
m decay/circ	40	%

BNL Footprint

FRONT END SIMULATION

Up to and including match to acceleration linac, (as remembered by Bob Palmer)

• Pion Production & radiation

- MARS code
- Checked against 2 other codes
- Checked against Collaboration AGS Exp E910
- $- ext{ differences} pprox 20\%$

• Target Geometry

- Gaussian p beam
- cylindrical Hg target¹
- tilts as specified

• Tracking trough phase rotation and cooling

- design code: ICOOL
- tracking in 3D, including spin
- decays pi-mu, mu-e
- statistics to 50,000 in, 10,000 out
- confirmation by DP GEANT
- $-{
 m tracking\ differences} \le 5\%$
- most error studies by DP GEANT

¹no distortion or turbulence

• Magnetic Fields

- Field Maps from coil geometries
 - * capture
 - * periodic transport
 - * field flips in phase rotation
 - * Cooling lattice
 - * matching between each

• RF Fields

- Analytic pill-box time dependent²

• Materials Interactions

- dedx: Bethe Block with density effect
- scatter: Moliere with Rutherford limit³
- straggle: Vavilov + gaussian and Landau limits

• Material geometries

- H2 with hemispherical ends⁴
- Al windows with constant thicknesses as specified 5
- stepped RF Be windows as specified

²noses and rounded outside shape not included, but expected to have negligible effect

³some questions remaining on possible overestimate of hard scattering

⁴Study done off line found results insensitive to shape

 $^{^{5}\}mathrm{not}$ tapered

• Errors

- coil currents
- coil transverse positions
- coil tilts
- H2 densities
- no significant effects with engineering tollerances and no steering
- \bullet Overall uncertainty $\approx 30\%$

FRONT END PERFORMANCE

	p energy	μ/\mathbf{p}	μ/p/GeV	
	${f GeV}$		$\%/{ m GeV}$	
Study 1	16	0.018	.11	
Study 2	24	0.17	.71	

Total efficiency gain \approx 6 \times

- ullet No change per MW from 24 vs 16 GeV
- ullet From use of the mercury: 1.9 imes
- ullet From phase rotation pprox 2 imes
- ullet From cooling design: pprox 1.4 imes
- ullet From larger acceptance: 1.2 imes

IMPROVEMENTS?

- Longitudinal Cooling(Emittance exchange)
 - -Less loss: $\approx 2 \times \mu/p$
 - Cheaper acceleration?
 - Progress (Thursday)
- Bunch Beam Phase Rotation
 - -both signs
 - Reduced Cost
 - Progress (Thursday)
- FFAG Acceleration
 - -larger acceptance?
 - -lower cost?
 - Progress (Thursday)
- Others

CONCLUSIONS

- BNL (like FNAL) is a good site for a factory
- ullet Study 2 has 6 imes efficiency of study 1
- Upgrade to 4 MW (factor of 4)
- Efficiency gains probable
- Cost reduction probable
- Big step to a Neutrino Factory
- Small step to a Muon Collider